

Collagen Type II Cleavage Sandwich Assay (IB-C2C-HUSA™) Cat. # 60-1007

Brief literature review of some publications where IBEX C2C-HUSA ELISA assay was used.

- A population-based cohort with pre-radiographic disease and radiographic OA was evaluated at baseline and follow-up after 3.3 years. The study revealed that IB-C2C-HUSA degradation assay detects the generation of a pathology-related cartilage collagen peptide(s) that progressively increase(s) with onset of knee articular cartilage degeneration. Cross-sectionally, the assay could discriminate between the subgroups with the highest level of C2C-HUSA biomarker seen in radiographic OA group (Figure A). There was a progressive increase in C2C-HUSA levels with increasing cartilage degradation.
- Moreover, in subject already exhibiting cartilage pathology, analysis of baseline urine with C2C-HUSA assay was predictive of subsequent cartilage loss over 3 years, with progressors showing significantly increased levels compared to non-progressors (Figure B).(Poole et al. 2016).

- In an OA initiative head to head assessment of 18 biomarkers, C2C-HUSA was one of 8 biomarkers that predicted case status and one of only 2 biomarkers, the other one being CTX-II, that predicted individual group status, including pain worsening, joint space loss and their combination (Kraus *et al.* 2016).
- Tamm *et al.* (2014) also observed positive correlations with symptoms as well as joint function in a study with middle age patients with knee OA.
- In a recent study of adolescent and adult volleyball athletes, uC2C levels were reduced in adolescent with closed growth plates compared to open growth plates. In adults, uC2C as well as uCTX-II levels, showed a marked reduction from adolescent levels. Greater levels of uC2C in adolescents than in adults may reflect increased cartilage turnover in response to higher joint loading. (Boeth et al. 2017).

Collagen Type II Cleavage Sandwich Assay (IB-C2C-HUSA™) Cat. # 60-1007

- 1. Poole AR, Ha N, Bourdon S, Sayre EC, Guermazi A, Cibere J. (2016). Ability of a urine assay of type II collagen cleavage by collagenases to detect early onset and progression of articular cartilage degeneration: Results from a population-based cohort study. J Rheumatol. 43:1864-70.
- 2. Tamm AO, Kumm J, Tamm A, Lintrop M, Kukner A et al. (2014). Cartilage collagen neoepitope C2C and clinical parameters in middle-aged patients with knee problems. Correlations of urinary output of C2C with cartilage lesions, KOOS values and functional abilities of lower limb. Osteoarthritis Cartilage 22: S70-S71.
- 3. Boeth H, MacMahon A, Poole AR, Buttgereit F, Onnefjord P et al. (2017). Differences in biomarkers of cartilage matrix turnover and their changes over 2 years in adolescent and adult volleyball athletes. J Exp Orthop 4: 1-11.
- 4. Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M et al. (2016) Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. <u>Ann Rheum Dis.</u> 76:186-95.